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Abstract. The extremal paths that arise in  the stationary phase evaluation of coherent 
state path integrals do not seem to have a simple physical interpretation, in contrast to 
the extremal paths that occur in the conventional path integrals. On the other hand, a 
recently derived semiclassical formula for the coherent state propagator involves a path 
that is determined in exactly the same manner as the extremal paths of the conventional 
path integrals. Since both the semiclassical and the stationary phase analyses yield 
asymptotic (h -j 0) approximations, the stationary phase and the semiclassical expressions 
for the propagator should be identical. We present a simple and direct proof that, in spite 
of the apparent differences, this is indeed the case. The simplification in the semiclassical 
formula is due to the utilisation of an appropriate set of canonical variables to describe 
the classical dynamics. 

In  order to illustrate the usefulness of the semiclassical formula we present an applica- 
tion to the problem of the degenerate parametric amplifier, which had been treated before 
by operator ordering and path integral methods. The semiclassical approach has a simple 
classical interpretation that is absent in the alternative treatments. 

1. Introduction 

Since the introduction of the coherent states in quantum optics by Glauber (1963), 
these states have found many applications in various fields of physics and chemistry 
(Glauber 1963, Heller 1976, Davis and Heller 1979, Weissman and Jortner 1981, 
Hioe 1974, Ruggiero and Zannetti 1982, Yaffe 1982). Consequently, their properties 
have been thoroughly investigated (Louise11 1973, Klauder and Sudarshan 1968, 
Perelomov 1971, 1977, Boon and Zak 1978, Bacry et a1 1978). Since a coherent 
state may be regarded as the quantum-mechanical analogue of the classical concept 
of a phase space point, the coherent states representation seems to be most suitable 
for semiclassical approximations (Heller 1977b). 

Perhaps the most important feature of the path integral concept (Feynman and 
Hibbs 1965) is the expression of the quantum propagator matrix elements in terms 
of classical objects like phase space, paths and the classical action function. In many 
situations only a few paths contribute significantly to the path integral, and in these 
cases it can be reduced to one or more conventional integrals. These paths, to which 
we shall refer from now on as ‘extremal paths’, have a simple physical significance: 
they turn out to be the classical paths that connect the eigenvalues (considered as 
classical canonical variables) that correspond to the eigenstates between which the 
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propagator is computed (Klauder 1978). This reduction of the path integral to 
conventional integrals is achieved by the application of the stationary phase method 
(Klauder 1978) and therefore can be regarded as an asymptotic or semiclassical 
evaluation of path integrals. In fact many semiclassical approximations, that had been 
derived directly, can be derived from the path integral formulation in this manner 
(Rajaraman 1975). 

Recently, the path integral in the coherent states representation has been con- 
sidered (Klauder 1978, 1979, Klauder and Daubechies 1982, Faddeev 1975, Blaziot 
and Orland 198 1). However, an application of the stationary-phase approximation 
to this integral revealed that its extremal path has a rather bizarre structure; it 
undergoes a discontinuous jump at its two endpoints (Klauder 1978, 1979). When 
these two singular points are eliminated, a classical path is obtained which, however, 
is determined by seemingly artificial boundary conditions (Klauder 1978,1979). These 
facts obscure the physical interpretation of the coherent state path integral, and thus 
hinder its usefulness as both a practical and conceptual tool. 

An attempt to derive a direct semiclassical approximation to the coherent state 
propagator was done by Heller (1977a). Heller’s approach was based on Miller’s 
general semiclassical theory (Miller 1974). Recently, Heller’s results were reformu- 
lated, and a simple semiclassical formula for the coherent state propagator was derived 
(Weissman 1982). This formula is very similar to the stationary-phase approximants 
of the conventional path integrals, i.e. it involves an action integral over a classical 
path that is determined by the same boundary conditions that occur in  the determina- 
tion of the extremal paths of the conventional path integrals. Consequently, the 
semiclassical formula has a simple physical interpretation. 

Both the semiclassical formula and the stationary phase approximant to the path 
integral are asymptotic ( h  + 0) evaluations of the coherent state propagator. In view 
of the uniqueness of asymptotic expansions, these two results, in spite of the apparent 
differences, should be identical. In  order to remove any doubt regarding the validity 
of the semiclassical or the stationary phase formulae we present below a simple and 
direct proof of their identity. The simplification in the semiclassical formula occurs 
due to the use of an appropriate set of canonical variables to describe the classical 
dynamics (Weissman 1982). In the semiclassical approach it was also possible to 
derive a simple, explicit expression for the pre-exponential factor, which has not been 
derived in the path integral approach. 

As an example, we apply the semiclassical formula to the computation of the 
coherent state propagator for the degenerate parametric amplifier. The Hamiltonian 
of this system is quadratic in the creation and annihilation operators and, therefore, 
the semiclassical approximation yields an exact result in this case. The problem of 
the degenerate parametric amplifier has been solved already using operator ordering 
methods (Yuen 1976) and more recently using the coherent state path integral (Hillery 
and Zubairy 1982). The semiclassical formula yields the correct result in a simpler 
and more physically transparent way. 

2. The stationary phase and the semiclassical formulae 

For the sake of completeness and clarity, we present here, without derivation, the 
stationary phase approximation to the coherent state path integral (Klauder 1979) 
and the semiclassical approximation to the coherent state propagator (Weissnan 1982). 



Asymptotic evaluation of coherent state path integrals 2695 

First, it is necessary to introduce the notation that is used for the coherent states 

(2.1) 

exposition. A coherent state )qc, p , )  can be defined as (Weissman 1982) 
2 --1/4 (4  Iqc, PJ = (TV ) exp[-l(q - q , ) * ~ - ~  + ih-’(qpC - +sCpc)1, 

where U is a constant with dimensions of length. The state /4,, p , )  is localised in both 
the 4 and p representations and 

(2.2) 

which explains the physical significance of the labels 4,, pc .  Alternatively, we may 
use a single complex number a : 

(2.3) 
to label a coherent state (Louisell 1973). This labelling arises from an alternative 
definition of the coherent state la) (Louisell 1973) 

( 4 0  Pc14 l q c ,  P c )  = 4 c ,  ( S C ,  PclP I q c ,  P C )  = P c ,  

a = i J ! ( q c c r - ’  + icTh-’p,) 

ala) = a la) (2.4) 
where a is the boson destruction operator. In fact, the complex labelling is widely 
used in coherent state theory (Louisell 1973). 

The stationary phase approximation to the coherent state path integral is (Klauder 
1979) 

(PI!, q”/P( t” ,  t ’ ) l p ’ ,  q‘) z e x p  ~ih-’(q”a1‘-p“4”+4’pf -p ‘q’ )  I 

where P(t”,  t’)  is the time propagator operator: 

P ( t ” ,  t ’ )  = T exp( -ih -’ It: d dt) (2.6) 

and [q ( t ) ,  p ( t ) ]  is the classical path that is determined by Hamilton’s equations of 
motion 

4‘ = aH/ap, $ = -dH/aq, (2.7) 
and the boundary conditions 

q’V-’+iah-’p’ =4p + iah-’p’. 
4 1 1 V - ’  ~ i a ~ - ’ ~ ” = q ” a - l  -icTj.-lpIf. 

q ( t )  = q’ ,  
P(t ‘ )  = p’, 

In the above we have used the notation 

4 ( t ” )  = q”, 
P(t“)  = p”, 

(2.10) 

(2.11) 
To avoid a misunderstanding, let us note that 4’ ,  q”, p’ ,  p” are, in general, complex 
while q’,  q” ,  p ’ ,  p ”  are real. As we have mentioned above, the extrema1 path from 
which equation (2.5) was derived is discontinuous at its endpoints. These discon- 
tinuities give rise to the first term in the exponent on the right-hand side of equation 
(2.5). The operator fi in (2.6) is the quantum Hamiltonian operator, and H in (2.7) 
is the classical Hamiltonian that corresponds to it. In the above we have used Klauder’s 
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notation (Klauder 1979). However, while Klauder uses units in which h = U = 1, we 
feel that the little extra labour necessary for the retaining of h and U is justified. 

In the semiclassical formula we represent the classical dynamics in terms of the 
canonical variables (Q, P), that are derived from the usual variables (4, p )  by means 
of the canonical transformation (Weissman 1982) 

(2.12) 

(2.13) 

The variables (Q, P )  are referred to as ‘coherent variables’ (Weissman 1982). The 
coherent variables differ from usual canonical variables in that they are complex for 
real 4 and p. 

As we have seen, complex numbers can be used to label coherent states, and in 
the semiclassical theory of coherent states it  is convenient to label the coherent states 
with the coherent variables Q and P. 

The semiclassical approximation for the coherent states propagator is (Weissman 
1982) 

(Qz19(t2, tl)lP1) = (a2F/aQz aPl)’” exp[ih-’F - $h-1(lQ212 + IPIIz)]. (2.14) 

In the above equation, F is an Fz type canonical generating function for the canonical 
transformation (Q2, Pz)  + (Q1, P1) where (01, PI) and (02,  P2) are the endpoints of a 
classical path. This path is determined by Hamilton’s equations of motion 

Q = aH/ap, P = -dH/dQ, (2.15) 

Q = ($h/i)’”(4/~ - bh- lp ) ,  

P = ( t ~ / i ) ” ~ ( 4 / ( +  + iuh-lp). 

and the boundary condition 

POl) = P1, Q ( t 2 )  = Qz. (2.16) 
It is known from classical mechanics that the generating function F is given by 
(Goldstein 1972) 

(2.17) 

where [ Q ( t ) , P ( t ) ]  is the classical path that is determined by (2.15) and (2.16), and 
Q1 stands for Q(t l ) .  

Strictly speaking, the canonical generating functions contain an undetermined 
additive constant. The reason for choosing the above particular form for F is discussed 
by Weissman (1982). 

The function H ( Q , P )  that appears in (2.15) and (2.17) is again the classical 
Hamiltonian that corresponds to the quantum Hamiltonian fi. Klauder (1979) uses 
the following definition of H 

H(4 ,  P )  = (4, ~ I f i l s ,  P ) .  (2.18) 

When fi is expressed in terms of boson creation and annihilation operators, this 
procedure calls for the substitutions 

a + t f i ( 4 U - l  +iCrh-’p), (2.19) 

at  + $ f i ( 4 U - l -  iah-lp), (2.20) 

in the normally ordered form of fi (Louise11 1973). However, there are indications 
(Weissman, unpublished) that better results can be obtained by following the general 
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rule for the correspondence between classical and quantum quantities, which calls for 
symmetrisation of products of non-commuting operators (Cohen-Tannoudji et a1 
1977). Thus in using the semiclassical formula, we recommend deriving the classical 
Hamiltonian by making the substitutions 

a + (h/i)-’”P, (2.21) 

a + + (h/i)-’I2Q, (2.22) 

in the symmetrised form of fi. In the classical limit ( h  + 0) both versions coincide. 
Also for Hamiltonians that are at most quadratic in a and a t ,  the two different 
procedures yield classical Hamiltonians that differ only by an additive constant and, 
therefore, in this case the difference between the two procedures for deriving H from 
fi is immaterial. Obviously, the semiclassical and the stationary phase formulae 
become identical only if the same rule is used to derive the classical Hamiltonian H 
from l? in both cases. 

3. The identity of the stationary phase and the semiclassical formulae 

In order to compare both results, let us put 

p1 = (~ /2 i ) ’ / ’ (q‘~- ’  + iuh-lp’), 

Q2 = (h/2i)1’2(4’‘~-1 - iuh-’p”), 

with 4’, 4”, p ’ ,  p ”  real. Using equations (2.12) and (2.13) we can cast the semiclassical 
boundary conditions (2.16) in the form 

(3.3) 

(3.4) 
These boundary conditions are identical to the boundary conditions of the path 

occurring in the stationary phase approximation that are expressed in equations (2.8) 
and (2.9). Since the equations of motion for 4 ( t )  and p ( t )  are identical to those of 
q ( t )  and p ( t )  (provided, of course, that one uses the same Hamiltonians in both 
cases), we may conclude that the paths [4( t ) ,  p ( t ) ]  and [q( t ) ,  p( t ) ]  for a given Q2 and 
P1 (or alternatively the corresponding (4”, p ” )  and (4’, p ’ ) )  are the same. It remains, 
therefore, to prove the identity of the terms that occur in the exponentials. We start 
by expressing F in terms of the (q, p )  variables: 

F = 1:‘ (PQ - H )  dt +PIQl 

On the other hand we have 

IP1I2 = $-l(q‘2u-2+u2h-2p‘2),  

I Q 2 I 2  = lh(q”2u-2+u2h-2p, ’2) .  
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The general solution of these equations is 

where A and B are complex constants, to be determined by the boundary conditions 

(4.10) 

(4.11) 

Solving these equations for A and B and returning to the Q, P variables we get the 
required trajectory 

Q ( t )  = [exp(iwt)/c(tz- tl!][exp(-iotz)Qzc(t - t l )  + i exp(iwtl)Pls(t - td1, (4.12) 

P( t )  = [exp(-iot)/c(t, - tl)][-i exp(-iwtz)Qzs(t - t l )  +exp(iwtl)Plc(t - fz)], (4.13) 

exp(-iotz)Qz = A  e ~ p ( 2 k t ~ h - l )  + B exp(-2ktzh-*), 

exp(iwtl)Pl= -iA e ~ p ( 2 k t ~ h - l )  + iB exp(-2ktlh-'). 

c ( t )  = cosh(2kh-'t), s ( t )  = sinh(2kK't). 

One can now use equation (2.17) to compute F(Qz,  PI). However, in this case it 
is simplest to determine F directly, using the equations 

aF/aP1 = Q1, 

aF/aQz = pZ. 

(4.14) 

(4.15) 

From equations (4.12) and (4.13) we have 

Q1= Q(tl)  = [exp(-iwAt)Qz-i exp(2iwtl)s(At)Pl]/c(At), 
PZ = P(tz) = [-i exp(2iwt2)s(At)Qz +exp(-iwAt)P1]/c(At), 

(4.16) 

(4.17) 

Substituting now the right-hand side of equation (4.16) for Q1 in equation (4.14) 
where At = f z - f l .  

and solving, we get 

F = [exp(-iwAt)QzPl - 5 exp(2iotl)s(At)P:]/c (At)  +f(Qz), (4.18) 

where f(Qz) is a yet unknown function of Oz. Using (4.15), (4.16) and (4.18) we get 

af/aQz = -i exp(-2iwt2)s(Af)/c(At)Q2, 

so that finally 

(4.19) 

F(Q2, PI) = (exp(-iwAt)QzPl- %s(At)[exp(2iwtl)P: -t exp(-2iwt~)Q~]}/c(Ar) + C, 
(4.20) 

where C is a (possibly time dependent) constant. To determine C let us note that 
the particular trajectory that is determined by Qz = P1 = 0 vanishes altogether, so that 
for that particular trajectory we have, by equation (2.17), 

' 2  

F(O, 0 )  = - J H ( O ,  0,  t )  dt = ihw At. 
11 

Since from (4.20) we have F(0,O) = C we conclude that 

(4.21) 

c = -:hwLlt. (4.22) 
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(4.23) 

We can now compute the pre-exponential factor 

[dzF/dQz dPl]”z = [c(At)]-”* exp(- i iw At). 

Using equation (2.22) we obtain the final form of the propagator 

(Qzlp(tz, ti)lPi) 

= [c(At)]-’” exp{ih-’ exp(-iwAt)Q2P1/c(At) +tfi-’ tanh(2kAtfi-’) 

x [e~p(2iwr~)P~+exp(-2iwt~)Q~]-~fi-~(~Q~~~ + IPIIz)}. (4.24) 

This result coincides with the one obtained before by path integral methods (Hillery 
and Zubairy 1982). Let us note that had we not used the symmetrised form of fi to 
derive H we would have obtained an extra term & A t  in the exponent. 

5. Conclusion 

We have shown that the semiclassical approximation to the coherent state propagator 
is just a reformulation of the stationary phase approximant to the coherent state path 
integral. This reformulation, however, has the merit of providing a simple classical 
interpretation, which makes the semiclassical formula physically appealing. Our result 
also suggests that by using the coherent variables, the coherent state path integral can 
be put in a form which is very similar to the form of the conventional path integrals. 
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